Cra and CRP Have Opposing Roles in the Regulation of the fruB in Vibrio cholerae

Christina Beck, a* Sayde Perry, a Daniel M. Stoebel, b and Jane M. Liu a #

a Department of Chemistry, Pomona College, Claremont, California, USA
b Department of Biology, Harvey Mudd College, Claremont, California, USA

#Address correspondence to Jane M. Liu, jane.liu@pomona.edu.
*Present address: Christina Beck, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Supplemental Materials
Figure S1
Figure S2
Figure S3
Figure S4
Figure S5
Figure S6
Figure S7
Figure S8
Table S1
Table S2
References
Figure S1. Experimental fruB TSS differs from TSS from published RNA-Seq. Sequence of the antisense strand of the fruB-cra intergenic region, written 5’ to 3’. Coding regions of fruB and cra are written in blue and green bolded text respectively. 5’ RACE was used to determine the transcription start site of fruB (fruB TSS-2; written in blue and underlined) to be 133 nt upstream of the start codon (which is at position +242, relative to TSS-1). fruB_5’RACE_GSP1 and fruB_5’RACE_GSP2 reverse primers were used to reverse-transcribe transcripts in 5’ RACE experiments. RNA used for 5’ RACE was extracted from V. cholerae cultured in 1X M9 + 0.4% wt/vol fructose. This TSS differs from that identified by Papenfort et al., 2015 (fruB TSS-1; written in blue and underlined), which lies 241 nt upstream of the fruB start codon (1). The cra TSS (which lies on the sense strand) is written in green and underlined. Putative Cra and CRP binding sites are written in purple and red bolded text respectively. Putative fruB -10 and -35 hexamers are underlined. IGR4 (107 nt), a putative product of transcriptional processing, is highlighted in teal. Coordinates relative to the fruB TSS-1 +1 site are included on the left side of the sequence.
Figure S2. Consensus between fruB 5’ RACE samples extracted from fructose cultures and sequence upstream of fruB’s start codon. The TSS is expected to lie directly downstream of the poly-dG tail synthesized during 5’ RACE, which is highlighted by the green box. fruB’s start codon is highlighted by the yellow box. RNA for 5’ RACE was extracted from V. cholerae cultured in 1X M9 + 0.4% wt/vol fructose, and fruB_5’RACE_GSP1 and fruB_5’RACE_GSP2 were used as primers in reverse transcription reactions. Amplified fragments were sequenced and aligned using CLC Sequence Viewer 7. 24 total sequences were analyzed across two separate experiments, and five sequences suggest that the TSS lies approximately 133 nt upstream of fruB’s start codon.
Figure S3. Consensus between *fruB* 5’ RACE samples extracted from glucose cultures and sequence upstream of *fruB*’s start codon. The TSS is expected to lie directly downstream of the poly-dG tail synthesized during 5’ RACE, which is highlighted by the green box. *fruB*’s start codon is highlighted by the yellow box. RNA for 5’ RACE was extracted from *V. cholerae* cultured in 1X M9 + 0.4% wt/vol glucose, and fruB_5’RACE_GSP1 and fruB_5’RACE_GSP2 were used as primers in reverse transcription reactions. Amplified fragments were sequenced and aligned using CLC Sequence Viewer 7. 12 sequences were analyzed, and five sequences suggest that the TSS lies approximately 133 nt upstream of *fruB*’s start codon.
Figure S4. FPr levels are highest in fructose media. Western blots of FPr-FLAG (JL436) in 1X M9 supplemented with fructose and (A) glucose or (B) mannitol. Cultures were grown overnight in 1X M9 with the indicated mixtures of fructose and glucose or mannitol, totaling 0.4% wt/vol. The following day, cultures were back-diluted into fresh 1X M9 with the same mixtures of carbon sources as before. Back-dilutions were grown to mid log phase before protein extraction. 5 μL of the 100 μL protein extraction was included in loaded samples. Rabbit α-FLAG antibodies were used in Western blot analysis. Protein levels were normalized to REVERT Total Protein Stain.
Figure S5. Consensus sequence between *cra* 5' RACE samples and sequence upstream of *cra’s* start codon. The TSS is expected to lie directly downstream of the poly-dG tail synthesized during 5' RACE, which is highlighted by the green box. *cra’s* start codon is highlighted by the yellow box. RNA for 5' RACE was extracted from *V. cholerae* cultured in 1X M9 + 0.4% wt/vol fructose, and *cra_5’RACE_GSP1* and *cra_5’RACE_GSP2* were used as primers in reverse transcription reactions. Seven sequences were analyzed, and four sequences suggest that the TSS lies approximately 57 bp upstream of *cra’s* start codon.
Figure S6. Schematic of P_{cra} transcriptional reporter design. The TSS of cra is indicated by the sideways arrow. This TSS was first determined by Papenfort et al., 2015 using RNA-Seq, and we observed the same TSS in this work using 5’ RACE (RNA for 5’ RACE was extracted from cultures grown in fructose media). The region of the cra promoter included in P_{cra} is indicated by the single-headed arrow. Exact coordinates for this region are listed to the right of the arrow, with numbering based on the cra TSS as +1. The red bar depicts a putative CRP binding site, which lies 14 nts upstream of cra’s start codon.
Figure S7. Cra levels remain unchanged when IGR4 is overexpressed. Western blot of Cra-HA pJML05 (JL530) and Cra-HA pJML05::IGR4 (JL531) in 1X M9 plus 0.4% wt/vol fructose or mannose. Protein was extracted using BPER. Rabbit α-HA antibodies were used in Western blot analysis. Protein levels were normalized to REVERT Total Protein Stain. The blots shown represent one of two experiments that are both included in the bar graph.
Figure S8. MtlA expression in the absence of Cra. Western blot of MtlA-FLAG (JL2) and Δcra MtlA-FLAG (JL538) in 1X M9 plus 0.4% fructose, glucose, or mannitol. Rabbit α-FLAG antibodies were used in Western blot analysis. Protein levels were normalized to REVERT Total Protein Stain. The blots shown represent one of two experiments that are both included in the bar graph.
<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Description or genotype</th>
<th>Ref or Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. cholerae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JL1</td>
<td>N16961 ΔtcpA Sm<sup>R</sup></td>
<td>(2)</td>
</tr>
<tr>
<td>JL2</td>
<td>N16961 ΔtcpA mtlA-FLAG Sm<sup>R</sup></td>
<td>(2)</td>
</tr>
<tr>
<td>JL435</td>
<td>N16961 ΔtcpA cra-HA Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL436</td>
<td>N16961 ΔtcpA fruB-FLAG Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL461</td>
<td>N16961 ΔtcpA Δcra Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL521</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL530</td>
<td>N16961 ΔtcpA cra-HA pJML05 Sm<sup>R</sup> Ap<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL531</td>
<td>N16961 ΔtcpA cra-HA pJML05::IGR4 Sm<sup>R</sup> Ap<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL538</td>
<td>N16961 ΔtcpA Δcra mtlA-FLAG Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL539</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL558</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL567</td>
<td>N16961 ΔtcpA fruB-FLAG P<sub>fruB</sub>-lacZ (-259 → +102) Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL568</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG P<sub>fruB</sub>-lacZ Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL569</td>
<td>N16961 ΔtcpA cra-HA P<sub>cra</sub>-lacZ (-250 → +10) Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL576</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG P<sub>fruB</sub>-lacZ Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL577</td>
<td>N16961 ΔtcpA Δcra cra-HA P<sub>cra</sub>-lacZ Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL580</td>
<td>N16961 ΔtcpA Δcra Δcra fruB-FLAG P<sub>fruB</sub>-lacZ Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL581</td>
<td>N16961 ΔtcpA Δcra Δcra fruB-FLAG P<sub>fruB</sub>-lacZ pTrc99A::cra Sm<sup>R</sup> Ap<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL582</td>
<td>N16961 ΔtcpA Δcra Δcra fruB-FLAG P<sub>fruB</sub>-lacZ pTrc99A Sm<sup>R</sup> Ap<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL590</td>
<td>N16961 ΔtcpA fruB-FLAG P<sub>fruB</sub>_min-lacZ (-50 → +10) Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL591</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG P<sub>fruB</sub>_min-lacZ Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL592</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG P<sub>fruB</sub>_min-lacZ Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL597</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG P<sub>fruB</sub>-lacZ pTrc99A Sm<sup>R</sup> Ap<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL619</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG P<sub>fruB</sub>-lacZ pJML05 Sm<sup>R</sup> Ap<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL620</td>
<td>N16961 ΔtcpA Δcra Δcra fruB-FLAG P<sub>fruB</sub>-lacZ pJML05 Sm<sup>R</sup> Ap<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL621</td>
<td>N16961 ΔtcpA Δcra Δcra fruB-FLAG P<sub>fruB</sub>-lacZ pJML05::cra Sm<sup>R</sup> Ap<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL622</td>
<td>N16961 ΔtcpA Δcra fruB-FLAG P<sub>fruB</sub>_cra-lacZ Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL626</td>
<td>N16961 ΔtcpA fruB-FLAG P<sub>fruB</sub>_cra-lacZ (-93 → +10) Sm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>JL629</td>
<td>N16961 ΔtcpA fruB-FLAG P<sub>fruB</sub>_null-lacZ (+11 → +116) Sm<sup>R</sup></td>
<td>This study</td>
</tr>
</tbody>
</table>
Table S1 continued

<table>
<thead>
<tr>
<th>Organism</th>
<th>Strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>TOP10</td>
<td>$F^- mcrA \Delta(mrr-hsdRMS-mcrBC) \Phi80lacZ\DeltaM15 \Delta lacX74 recA1 araD139 (\Delta(ara leu)7697 galU galK rpsL endA1 nupG Sm^R$</td>
<td>Invitrogen</td>
</tr>
<tr>
<td></td>
<td>DH5αpir</td>
<td>$F^- \Delta(lacZYA-argF)U169 recA1 endA1 hsdR17 thi-l gyrA96 relA1\lambda::pir$</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>SM10λpir</td>
<td>$thi\ recA\ thr\ leu\ tonA\ lacY\ supE\ RP4-2-Tc::Mu\ \lambda::pir$</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCVD442</td>
<td>oriR6K mobRP4 sacB ApR</td>
</tr>
<tr>
<td>pJL1</td>
<td>pCVD442 derivative with 2.2 kb HpaI-digested VC2338 ($V.\ cholerae\ lacZ$) cloned into SmaI site of pCVD442; ApR</td>
</tr>
<tr>
<td>pJL1::lacZ(Ec)</td>
<td>pJL1 derivative with RBS and coding region of $E.\ coli\ lacZ$ inserted into the VC2338 fragment of pJL1 in an antisense orientation; ApR</td>
</tr>
<tr>
<td>pTrc99A</td>
<td>Cloning vector for expression of genes from trc promoter; ApR</td>
</tr>
<tr>
<td>pTrc99A::crp</td>
<td>pTrc99A derivative with coding region from VC2614 (crp) inserted between Sacl and XbaI sites; ApR</td>
</tr>
<tr>
<td>pJML05</td>
<td>pTrc99A derivative with the PLlacO-1 promoter in place of the pTrc promoter; ApR</td>
</tr>
<tr>
<td>pJML05::cra</td>
<td>pJML05 derivative with coding region of VCA0519 (cra) inserted 50 nt downstream of the start of transcription; ApR</td>
</tr>
<tr>
<td>pJML05::IGR4</td>
<td>pJML05 derivative in which the IGR4 +1 site directly proceeds the PLlacO-1 promoter</td>
</tr>
</tbody>
</table>

aSmR, streptomycin resistance; ApR, ampicillin resistance. Coordinates of DNA fragments included in lacZ fusions are listed in parentheses following the first mention of the fusion. These coordinates are relative to the +1 site of the indicated gene as identified in Papenfort et al., 2015.
<table>
<thead>
<tr>
<th>Purpose and primer</th>
<th>Sequence (5’ → 3’)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloning of V. cholerae fruB-FLAG</td>
<td></td>
</tr>
<tr>
<td>LIU435 (F1)</td>
<td>GCC AAG CTT GCA TGC CGC GGT TTG TGG TTA GTA GCC</td>
</tr>
<tr>
<td>LIU436 (R1)</td>
<td>CCC TTA CTT GTC ATC GTC GTC TTT GTA GTC</td>
</tr>
<tr>
<td>LIU437 (F2)</td>
<td>ACC TTC GCC TAA GCC AGC ATT G</td>
</tr>
<tr>
<td>LIU438 (R2)</td>
<td>GAA GGT GAC TAC AAG GAC GAC GAT GAC</td>
</tr>
<tr>
<td>LIU439 (pCVD_R)</td>
<td>AAG TAA GGG GCA TCA CAT GAC AAA AAA AGT G</td>
</tr>
<tr>
<td>LIU440 (pCVD_F)</td>
<td>LIU437 (F2)</td>
</tr>
<tr>
<td>LIU441 (F0)</td>
<td>AGT GAA TTC GAG CTC CGA GTT CGG CGG</td>
</tr>
<tr>
<td>LIU442 (R0)</td>
<td>LIU438 (R2)</td>
</tr>
<tr>
<td>Cloning of V. cholerae cra-HA</td>
<td></td>
</tr>
<tr>
<td>LIU427 (F1)</td>
<td>GCC AAG CTT GCA TGC CAG CGG CTG AAG CTT TAG TCT C</td>
</tr>
<tr>
<td>LIU428 (R1)</td>
<td>TGT TTA AGC GTA GTC TGG GAC GTC GTA TGG GTA AGT GCG CAC CTG TAA CTG ACG TG</td>
</tr>
<tr>
<td>LIU429 (F2)</td>
<td>ACT TAC CCA TAC GAC GTC CCA GAC TAC GCT TAA ACA AAA TAA AGG TAT GAT ATG GC</td>
</tr>
<tr>
<td>LIU430 (R2)</td>
<td>AGT GAA TTC GAG CTC CGA TGG TCA ACA CGA TCT GAT CC</td>
</tr>
<tr>
<td>LIU431 (pCVD_R)</td>
<td>AAG CTT CAG CCG CTG GCA TGC AAG CTT GGC GTA ATC ATG</td>
</tr>
<tr>
<td>LIU432 (pCVD_F)</td>
<td>TCG TGT TGA CCA TCG GAG CTC GAA TTC ACT GGC CGT</td>
</tr>
<tr>
<td>LIU433 (F0)</td>
<td>CGA AAC GTT ATC AAA CGG GGA TCG</td>
</tr>
<tr>
<td>LIU434 (R0)</td>
<td>GCG ACC AAG ATG CCA ATC CG</td>
</tr>
<tr>
<td>Cloning of V. cholerae Δcra</td>
<td></td>
</tr>
<tr>
<td>LIU446 (F1)</td>
<td>GCC AAG CTT GCA TGC CAG CTG TTT TAG AAT GCC CAA ATG</td>
</tr>
<tr>
<td>LIU447 (R1)</td>
<td>CCT TTA TTT TGT TTA CAT AAG GGG GTC TCG TTT TAG GTG</td>
</tr>
<tr>
<td>LIU448 (F2)</td>
<td>CGA GAC CCC TTT ATG TAA ACA AAA TAA AGG TAT GAT ATG CGC CAG</td>
</tr>
<tr>
<td>LIU449 (R2)</td>
<td>AGT GAA TTC GAG CTC GAT TCA GAC TCC ATC GCG CC</td>
</tr>
<tr>
<td>LIU450 (pCVD_F)</td>
<td>GAT GGA GTC ATC GAG CTC GAA TTC ACT GGC CGT</td>
</tr>
<tr>
<td>Table S2 continued</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>LIU451 (pCVD_R)</td>
<td>ATT CTA AAG CAG CTG GCA TGC AAG CTT</td>
</tr>
<tr>
<td></td>
<td>GGC GTA ATC ATG</td>
</tr>
<tr>
<td>LIU452 (F0)</td>
<td>GGA TCA ACG AAG CGT CAA AAT CTG</td>
</tr>
<tr>
<td>LIU453 (R0)</td>
<td>GCT GTA TTT CAT CAA TGA GCC AGA G</td>
</tr>
</tbody>
</table>

Cloning of *V. cholerae* P_{fruB}-lacZ(Ec)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIU632 (fwd insert)</td>
<td>CAT GGC GTG ATG ATT CGA TGC GGC ATG</td>
</tr>
<tr>
<td>LIU633 (rev insert)</td>
<td>GTC TCC TGT GTG AAA AAC CTC GAA TAC TCA</td>
</tr>
<tr>
<td>LIU634 (fwd vector)</td>
<td>TGA GTA TTC GAG GTT TTT CAC ACA GGA AAC</td>
</tr>
<tr>
<td>LIU635 (rev vector)</td>
<td>GAT CAT GCC GCA TCG AAT CAT CAC GCC</td>
</tr>
<tr>
<td>LIU126 (F0)</td>
<td>GCT GAT CGA CCC GCG CAT AC</td>
</tr>
<tr>
<td>LIU127 (R0)</td>
<td>CCA ATG ATC CAC AAT GGG TGA ATG C</td>
</tr>
</tbody>
</table>

Cloning of *V. cholerae* $P_{fruB_{min}}$-lacZ(Ec)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIU646 (fwd insert)</td>
<td>CAT GGC GTG ATG ATT ATC CTA GCC TAG TGT TGA ATT ATA CG</td>
</tr>
<tr>
<td>LIU647 (rev insert)</td>
<td>GTT TCC TGT GTG AAA GAA TCC TTT CAG CTT TAA TAC TGA ATC G</td>
</tr>
<tr>
<td>LIU648 (fwd vector)</td>
<td>AAC CTG AAA GGA TTC TTT CAC ACA GGA</td>
</tr>
<tr>
<td>LIU649 (rev vector)</td>
<td>ACA CTA GGC TAG GAT AAT CAT CAC GCC ATG TAT CAG TGG</td>
</tr>
<tr>
<td>LIU126 (F0)</td>
<td>See above</td>
</tr>
<tr>
<td>LIU127 (R0)</td>
<td>See above</td>
</tr>
</tbody>
</table>

Cloning of *V. cholerae* $P_{fruB_{null}}$-lacZ(Ec)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIU673 (gBlock)</td>
<td>GTT GTC CAC TGA TAC ATG GCG TGA TGA TTA GCA AAA GTA CCG TTG ATT CAC AAT CTC GTC CAC TAC AAA GGT CAG ATT GTG TCG AGT ATC CAG CAA GAT CGT GAG TAT TCG AGG TTT TGC TGA ATT TTT TTG TTT CAC ACA GGA AAC AGC TAT GAC CAT GAT</td>
</tr>
<tr>
<td>LIU674 (fwd vector)</td>
<td>TTT CAC ACA GGA AAC AGC TAT GAC C</td>
</tr>
<tr>
<td>LIU675 (rev vector)</td>
<td>AAT CAT CAC GCC ATG TAT CAG TGG</td>
</tr>
<tr>
<td>LIU126 (F0)</td>
<td>See above</td>
</tr>
<tr>
<td>LIU127 (R0)</td>
<td>See above</td>
</tr>
</tbody>
</table>
Table S2 continued

<table>
<thead>
<tr>
<th>Cloning of V. cholerae PfruB_crp-lacZ(Ec)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIU679 (gBlock)</td>
<td>GTT TCG TCC ACT GAT ACA TGG CGT GAT GAT TGG GTC TCG TTT TAT GTG CGT CTG ATC ATA GAA CGC GAT TTT TGA TCC TAG CCT AGT GTT GAA TTA TAC GCT GAA TCG ATT CAG TAT TAA AGC TGA AAG GAT TCT TTC ACA CAG GAA ACA GCT ATG ACC ATG AT</td>
</tr>
<tr>
<td>LIU674 (fwd vector)</td>
<td>See above</td>
</tr>
<tr>
<td>LIU675 (rev vector)</td>
<td>See above</td>
</tr>
<tr>
<td>LIU126 (F0)</td>
<td>See above</td>
</tr>
<tr>
<td>LIU127 (R0)</td>
<td>See above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cloning of V. cholerae Pcra-lacZ(Ec)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIU638 (fwd insert)</td>
<td>CAT GGC GTG ATG ATT TGT GAT GTA TCG CTG CAG GTT TTC</td>
</tr>
<tr>
<td>LIU639 (rev insert)</td>
<td>GTT TCC TGT GTG AAA ATC CTA GCC TAG TGT TGA ATT ATA CGC</td>
</tr>
<tr>
<td>LIU640 (fwd vector)</td>
<td>ACA CTA GGC TAG GAT TTT CAC ACA GGA</td>
</tr>
<tr>
<td>LIU641 (rev vector)</td>
<td>AAC AGC TAT GAC C</td>
</tr>
<tr>
<td>LIU126 (F0)</td>
<td>See above</td>
</tr>
<tr>
<td>LIU127 (R0)</td>
<td>See above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cloning of pTrc99A::crp</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIU152 (rev vector)</td>
<td>TAT TTT AGC GAA GCC GAG CTC GAA TTC CAT GGT CTG TTT C</td>
</tr>
<tr>
<td>LIU153 (fwd vector)</td>
<td>TAC GGC ACT CGC TAA TCT AGA GTC GAC CTG CAG GCA TG</td>
</tr>
<tr>
<td>LIU154 (fwd insert)</td>
<td>ATG GAA TTC GAG CTC GGC TTC GCT GCT AAA ATA TGG ATA GCG</td>
</tr>
<tr>
<td>LIU155 (rev insert)</td>
<td>CAG GTC GAC TCT AGA TTA GCG AGT GCC GTA AAC CAC G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cloning of pJML05</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIU476</td>
<td>TCC GCT CAC ATT TAT CAG CTC ATT TCA GAA TAT TTT CCA GAA C</td>
</tr>
<tr>
<td>LIU477</td>
<td>CAA GAT ACT GAC GTC ATG GAA TTC GAG CTC GGT ACC C</td>
</tr>
<tr>
<td>LIU480</td>
<td>ATAAATGTGAGCGGATAAACATTTGACATTGTGAG CGGATAAAACAGATACTGACGTC</td>
</tr>
</tbody>
</table>
Table S2 continued

<table>
<thead>
<tr>
<th>Cloning of pJML05::cra</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIU652 (rev vector)</td>
<td>TGA TCC TAG CCT AGT GAC GTC AGT ATC TTG</td>
</tr>
<tr>
<td></td>
<td>TTA TCC GCT C</td>
</tr>
<tr>
<td>LIU653 (fwd vector)</td>
<td>AAG GTG CGC ACT TAA AAG CTT GGC TGT TTT</td>
</tr>
<tr>
<td></td>
<td>GGC GGA TG</td>
</tr>
<tr>
<td>LIU654 (fwd insert)</td>
<td>CAA GAT ACT GAC GTC ACT AGG CTA GGA</td>
</tr>
<tr>
<td></td>
<td>TCA AAA ATC GCG</td>
</tr>
<tr>
<td>LIU655 (rev insert)</td>
<td>AAA ACA GCC AAG CTT TTA AGT GCG CAC</td>
</tr>
<tr>
<td></td>
<td>CTT TAA CTG ACG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cloning of pJML05::IGR4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIU494 (fwd vector)</td>
<td>TAT TCG AGG TTT TGC AAG CTT GGC TGT TTT</td>
</tr>
<tr>
<td></td>
<td>GGC GGA TG</td>
</tr>
<tr>
<td>LIU495 (rev vector)</td>
<td>TTG CTG AAT CCT TTC GAC GTC AGT ATC TTG</td>
</tr>
<tr>
<td></td>
<td>TTA TCC GC</td>
</tr>
<tr>
<td>LIU496 (fwd insert)</td>
<td>CAA GAT ACT GAC GTC GAA AGG ATT CAG</td>
</tr>
<tr>
<td></td>
<td>CAA AAG TAC CGT TG</td>
</tr>
<tr>
<td>LIU497 (rev insert)</td>
<td>AAA ACA GCC AAG CTT GCA AAA CCT CGA</td>
</tr>
<tr>
<td></td>
<td>ATA CTC ACG ATC</td>
</tr>
</tbody>
</table>

cra 5’ RACE

<table>
<thead>
<tr>
<th>cra_5’RACE_GSP1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CTA AAG CTT CAG CCG CTG CC</td>
</tr>
<tr>
<td>cra_5’RACE_GSP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCT TGC CGC GAG TTC TGT TC</td>
</tr>
<tr>
<td>M13 Forward</td>
<td>TGT AAA ACG ACG GCC AGT</td>
</tr>
<tr>
<td>M13 Reverse</td>
<td>CAG GAA ACA GCT ATG ACC</td>
</tr>
</tbody>
</table>

fruB 5’ RACE

<table>
<thead>
<tr>
<th>fruB_5’RACE_GSP1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GGC AGA CAG CAC TCT GGT C</td>
</tr>
<tr>
<td>fruB_5’RACE_GSP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCG TCT CCC CAA TCC AAA CC</td>
</tr>
<tr>
<td>M13 Forward</td>
<td>See above</td>
</tr>
<tr>
<td>M13 Reverse</td>
<td>See above</td>
</tr>
</tbody>
</table>

qRT-PCR

<table>
<thead>
<tr>
<th>fruA fwd</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATG GGC TTA GCG ACC TTT ATC GC</td>
</tr>
<tr>
<td>fruA rev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCG CGC CAA ATA GCA TAG AGA GTG</td>
</tr>
<tr>
<td>fruK fwd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCT AAC CGA CTG CCA GCA AG</td>
</tr>
<tr>
<td>fruK rev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAG CAT AGA CCA GCA ACC AGC</td>
</tr>
<tr>
<td>fruB fwd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATC ACT GAG GAA ACG ATA GCC GCA</td>
</tr>
<tr>
<td>fruB rev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACT TGA CCA TCG CCA TCC AGG TTA</td>
</tr>
<tr>
<td>4.5S fwd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTG GTC TCT CCG CAA CAC</td>
</tr>
<tr>
<td>4.5S rev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAG ACC CCA GCC ACA TC</td>
</tr>
</tbody>
</table>

\(^a\)Twd, forward; rev, reverse; gBlock, dsDNA fragment; GSP, gene-specific primer.

\(^b\)Underlined regions indicate homology tails for fragment ligation using DNA fragment assembly.
References

