Bringing together several years of research with students and colleagues, I recently published two papers in the book “Volcanism and Tectonism Across the Solar System,” Geological Society of London Special Publication 401, which is due for release in 2015. The first paper, entitled Elastic models of magma reservoir mechanics: a key tool for investigating planetary volcanism, uses elastic finite element models to demonstrate how the interplay between volcanic elements – such as magma reservoir geometry, host rock environment (with an emphasis on understanding how host rock pore pressure assumptions affect model predictions), mechanical layering, and edifice loading with and without flexure – dictates the overpressure required for rupture, the location and orientation of initial fracturing and intrusion, and the associated surface uplift. The second paper, entitled Lithospheric flexure and volcano basal boundary conditions: keys to the structural evolution of large volcanic edifices on the terrestrial planets, examines how flexure of the mechanically strong outer layer of a planet influences magma ascent paths and chamber dynamics in the lithosphere, often favoring the development of oblate magma chambers or sill complexes.
For more information see: